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Introduction

To learn how large language models (like GPT, LamDA, and others) work, it’s useful to
understand how transformers work. To understand how transformers work, it’s good to
understand how the attention mechanism works. To understand how the attention
mechanism works, it’s useful to understand how sequence-to-sequence (seq2seq) models
work. To understand how seq2seq models work, it’s useful to understand how recurrent
neural networks (RNNs) work. To have a better understanding of RNNs, one should have a
foundational knowledge of neural networks and deep learning. To learn about neural
networks and deep learning, you probably first need to understand some basic machine
learning concepts.

Most learning materials on LLMs out there are either too shallow or too deep, not bringing all
the building blocks together, and often assuming some existing knowledge. This document is
an attempt to take you on a linear path “from zero to hero”, starting from the basics. With the
help of some linked videos and other resources, it will hopefully help you build an intuition
around the building blocks that make up LLMs.

Encoding Text
Machine learning (ML) algorithms are fundamentally based on math and statistics. They
work with numbers, not words. So, for natural language processing (NLP) systems, we need
a way to encode words into numbers.

A naive approach would be to assign each word from a dictionary a unique number. For
example:

Word Number

aardvark 1

… …

king 2551

… …

queen 3122

… …

The first major problem with this approach is that large numbers (like the ones shown in the
preceding table) may cause issues during the gradient descent steps (more on that later) of
the ML training process. In short, such numbers may prevent the training process from
converging to an optimal solution. A solution for this would be to apply the one-hot encoding
technique.

In one-hot encoding, words are mapped to a vector of the same length as the dictionary.
Each index in the vector represents a word in the dictionary, and to map a word to its vector



representation, we put “1” in the position corresponding to the word’s index, and “0”
everywhere else. For example:

Word One-hot vector

aardvark [1, 0, 0, …]

… …

king [0, 0, 0, …, 1, 0, …]

… …

queen [0, 0, 0, …, 0, …, 1, 0, …]

… …

Note: the one-hot vectors all have the same size.

While one-hot embeddings do use values that are amenable to machine learning (0s and 1s,
which are great), they have a few drawbacks:

● One-hot encoding is a sparse representation that requires a very large vector size to
capture all words in a large vocabulary (such as the English language).

● They don’t encode any meaning and knowledge about words or their relationships.
For example, the words “king” and “queen” are closer to each other in meaning than
they are to “aardvark”. And yet, these one-hot vectors are all orthogonal to each
other and separate by the same distance.

To illustrate both of these points, let’s consider a dictionary that only contains these three
words: aardvark, king, and queen. Their vector representations can therefore be mapped to
a 3D space as shown in the following image:

A simple example of one-hot encoding applied to a 3-word vocabulary (source: Transfer learning and
Transformer models (ML Tech Talks))

As you can see, there’s clearly a wasted opportunity by not “filling up” the space (i.e., using a
denser representation as opposed to the sparse one we see). And, because of that, we



cannot use this to infer anything about the meaning of the words. The word “king” here is
about as distant to the word “queen” as it is to “aardvark”.

A more ideal solution then is to map words to a continuous vector, allowing words to occupy
the entire vector space. Building on the same example, such a representation would be as
follows:

Word Continuous vector

aardvark [0.3, 1.9, -0.4]

king [2.1, -0.7, 0.2]

queen [1.5, -1.3, 0.9]

These continuous vector representations can be visualized as follows:

An example of continuous vector representation applied to a 3-word vocabulary (source: Transfer learning and
Transformer models (ML Tech Talks))

Such a technique is what is referred to as word embeddings and the numbers in the vector
- in case you were wondering where they come from - are not predefined, but learned.

Word Embeddings

A word embedding is a learned representation of a word as a real-valued vector. That vector
encodes the meaning of the word in a way that words that are close to each other in their
vector representation are expected to have similar or related meanings, or at least similar
syntactic functions.

Think about it this way: you map each word in a vocabulary to a vector in a
multi-dimensional space. And, just like you can use algebra to calculate the distance
between two vectors, or to add two vectors to obtain a third vector, you can do similar
operations on these word vectors. The distance between two vectors can be used as a
measure of similarity between words (in terms of semantics, or meaning). For example, if
you were to subtract “man” from “king”, and then add “woman”, you obtain a vector that is
very close to the “queen” vector.



In practice, there are many dimensions to this vector space which makes them impossible to
visualize in our minds. But in the world of math, there’s no limit to how many dimensions a
vector space can have and the underlying algebra works out in the same way.

One intuitive way to think about the “dimensions” of this space is that they represent word
categories - or attributes we would use to classify words. So, in an embedded word vector,
each index will correspond to a category, and the value in that index corresponds to how
much that word is associated with that category (and again, these values are learned, not
programmed into the algorithm). The following image illustrates this:

An illustration of word embedding (source: Word Embedding: Basics, Medium article)

And how are the meanings of words learned? The representations are learned based on
their usage. This results in words that are used in similar ways having similar
representations, “similar” here meaning that the vectors are close together in space.

This notion of letting the usage of a word define its meaning can be summarized by a quote
by John Firth:

“You shall know a word by the company it keeps!”

Example techniques for implementing word embeddings include Word2Vec, Continuous
Bag-of-Words (CBOW), skip-gram, and Global Vectors for Word Representation (GloVe).

Note: Models such as GPT-3 and similar do not use traditional word embedding algorithms
like Word2Vec or GloVe. Instead, they use a transformer architecture with self-attention
mechanisms to learn contextualized token representations which take into account each
token’s relationships with other tokens in the input sequence. The concept is the same -



mapping words to a dense vector representation - but the representations are learned
differently. More on that later.

Tokenization
Typically, models that process language don’t actually use words. Instead, they use what are
referred to as tokens.

There are different ways to tokenize words and sentences. For example, a simple and naive
way is to split a sentence by whitespaces. This way, in the sentence “Hey, isn't it a good time
to be alive?”, we end up with the tokens: “Hey,”, “isn’t”, “it”, “a”, “good”, “time”, “to”, “be”,
“alive?”. The problem with this approach is that “Hey,”, “isn’t”, and “alive?” will include
punctuation in them. So, if these words appear in a different sentence but without the
punctuation, the model would learn different representations for them, which is not ideal.

In practice, models like GPT use a tokenizer that takes this and other such nuances into
account and they’ll often split words into pieces, or “subwords”. The above sentence is
tokenized by the GPT family of models as follows:

Tokenization of the sentence “Hey, isn’t it a good time to be alive?”. Different colors demark different tokens.
Source: OpenAI Tokenizer

Open AI offers a tool to explore their tokenizer and see what results you get for different
input text: https://platform.openai.com/tokenizer.

So, in summary: the way sentences are “read” and processed by NLP models is by first
tokenizing the sentence, then embedding each token using one of the word embedding
techniques we discussed.

Neural Networks, Deep Learning, Gradient Descent, and
Backpropagation

The following is a Youtube playlist from 3Blue1Brown containing four videos that give a nice
introduction (with great visualizations) to neural networks and concepts such as gradient
descent and backpropagation (total watch time: 64min):

But what is a neural network? | Chapter 1, Deep learning

If you’re not already familiar with these concepts, I’d recommend watching this video series
before continuing. These videos probably do a better job than any written content you’d
spend the same amount of time reading would.



Recurrent Neural Networks

While traditional neural networks were capable of doing many things, they didn’t have a
good way to store some kind of state or internal memory, which is useful for processing
variable-length sequences of inputs. A recurrent neural network (RNN) solves this problem
by introducing a cycle in the connections between nodes, allowing output from the network
to affect subsequent input, effectively creating an internal memory (as the previous output is
“remembered” each time).

A basic illustration of the difference between a recurrent neural network and a traditional feed-forward neural
network (source: Uditvani.com)

The following video (22 min) does a great job of introducing the concept of recurrent neural
networks in a very intuitive way and I recommend watching it before continuing:

A friendly introduction to Recurrent Neural Networks

RNNs by design take two inputs, the current example they see, and a representation of the
previous input (hence why they’re called “recurrent”). This is the reason they perform well
when dealing with sequence-related tasks: the sequential information is preserved (in a
so-called hidden state, or context) and used in the next instance. RNNs are often applied in
natural language processing.

A commonly used variant of RNNs is the so-called long short-term memory (LSTM), which
has higher memory power.

Seq2Seq Models and Attention Mechanism

Sequence-to-sequence (seq2seq) models are deep learning models that take a sequence of
items as an input (such as a sequence of words, or tokens) and output another sequence.
They have been very successful in tasks such as image captioning, text summarization, and
translation (Google Translate started using such a model in production in late 2016).



Attention mechanism

To explain the attention mechanism, let us consider the Neural Machine Translation seq2seq
model. This model consists of two components: an encoder, whose job is to encode the
input sequence into continuous vector representations, and a decoder, whose job is to
generate the output sequence. Both encoder and decoder tend to be recurrent neural
networks (RNNs).

Let us first discuss how these models work without the attention mechanism.

The encoder processes each item in the input sequence, compiling them into a vector
(called the context). The size of the context vector can be set ahead of model training.
Essentially, the context vector summarizes the entire input sequence into a fixed-length
vector.

The concept of a context vector is somewhat similar to that of word embedding but applied
to an entire sequence (of words). The following image, from the paper
Sequence-to-Sequence Learning with Neural Networks, illustrates the learned context vector
representations for different input sentences:

Learned context vector representations in a 2-dimensional projection (source: Sequence-to-Sequence Learning
with Neural Network)

You can see from the preceding image that these representations are sensitive to word
order, which is indeed what we want when it comes to natural language processing. For
example, “Mary admires John” is relatively far in meaning to “John admires Mary” (as they
express entirely different ideas despite the two sentences having the exact same words),
and “Mary admires John” is relatively close to “Mary is in love with John”, since “is in love
with” and “admires” aren’t too far apart, semantically speaking.

After processing the entire input sequence and sending the context vector over to the
decoder, the decoder then begins producing the output sequence. A helpful animation that
illustrates this process on a high level is available in the blog article Visualizing A Neural
Machine Translation Model (Mechanics of Seq2seq Models With Attention) (direct link to
animation here).



Since RNNs work by processing sequences item by item, we can think of them as
processing a series of steps sequentially, where each time step represents one item in the
sequence. Therefore, to understand how the encoder and decoder RNNs work in more
detail, let’s see what happens at each time step as it applies to the example of translating
“Where is Wally” to Italian:

1. The input word from the sequence is converted into a vector using a word embedding
algorithm (not shown in the image below). The encoder RNN takes two inputs: the
embedded word vector and the current hidden state from the previous step. In the
first step, this will be a special initial hidden state.

Source: Two minutes NLP — Visualizing Seq2seq Models with Attention, Medium article

2. The encoder RNN processes the input and updates and outputs the new hidden
state (hidden state 1 in the preceding image).

3. The process repeats until all input words are processed by the encoder. The final
hidden state (called the context vector) is handed over to the decoder

Source: Two minutes NLP — Visualizing Seq2seq Models with Attention, Medium article

Then, the decoder RNN starts doing its thing. At each time step:

1. The decoder RNN takes as input the hidden state vector plus the previous output
token (in the first time step, the hidden state vector will be the encoder’s context
vector, and the token will be the special <START> token).

Source: Two minutes NLP — Visualizing Seq2seq Models with Attention, Medium article



2. The decoder RNN outputs a sequence item (“Dove” in the preceding image) and
updates its hidden state vector.

3. Repeat.

The drawback of having a single context vector as an output for the entire input sequence is
that, in the case of long sequences, there is a high probability that the initial context has
been lost by the end of the sequence. Remember that the context vector is a fixed-length
vector, so the longer the input, the more information is “lost”. But even for short sequences,
this approach still has the drawback of not capturing the fact that different input words may
be relevant at different steps.

Enters Attention.

Since the problem was that a single context vector is probably not enough to capture the
context of a long sequence, then how about having one vector per input sequence item (i.e.,
one vector per token)? That’s exactly what attention is: the encoder sends in as many
hidden state vectors as there are tokens in the input sequence. In addition, the decoder
assigns different attention weights to different hidden states at each time step, allowing the
model to “focus” on the relevant parts of the input sequence as needed. In other words, if a
word used way back at the beginning of a sentence is considered relevant (semantically and
contextually speaking) for the current word being processed by the decoder (we’ll talk more
about how relevance is measured later), this word will be more prominent for the decoder
and therefore will affect the output more strongly than for example the word that came just
before.

So, if we apply the attention mechanism, the new flow is as follows:

1. The input word from the sequence is converted into a vector representation (same as
before)

2. The encoder RNN then takes two inputs: the embedded word vector and the hidden
state vectors from the previous step.

3. The encoder RNN outputs a new hidden state vector for the current token
(appending to, not replacing, the previous ones).

Source for image: Two minutes NLP — Visualizing Seq2seq Models with Attention, Medium article



Once the entire input sequence is processed, the decoder RNN will then:

1. Take the previously generated token and the decoder’s own hidden state vector
which we will refer to here as the target hidden state vector

2. [Attention step] Take all the context vectors produced by the encoder RNN (each
vector is most associated with a certain word in the input sequence) and use the
current target hidden state to derive attention weights for each input vector. In other
words, the decoder determines the relevance of each input word at the current time
step by assigning a higher attention weight (i.e., a higher score) to the most relevant
words.

3. Multiply each encoder context vector by their respective score (this is done via a
matrix multiplication), and then by a softmax function to bring these values down to a
scale from 0 to 1 and in a way that the weights sum up to 1. This effectively creates a
probability distribution over the encoder's hidden states.

4. Sum up all the weighted vectors (where the weights are the attention weights) and
concatenate the resulting vector with the decoder’s current target hidden state to
yield the final attention vector. This vector represents the relevant information from
the input sequence for the current decoding step. The attention weights determine
the contribution of each encoder hidden state (effectively the contribution of each
input word, since each hidden state is most associated with a word) during the
decoding step.

5. The resulting attention vector is then passed through a fully connected feed-forward
neural network (FNN) layer followed by a softmax activation function, which outputs a
probability distribution over the target vocabulary. The token with the highest
probability is selected as the output token. The output token plus the updated hidden
state is passed as inputs to the next time step.

The full decoding step with the attention mechanism is illustrated in the following image:

Source for image: Two minutes NLP — Visualizing Seq2seq Models with Attention, Medium article

To more concretely illustrate the attention mechanism, consider the following sentence: “The
agreement on the European Economic Area was signed in August 1992.” as an input to a
translation model which will translate it to French.

The following matrix shows, for each generated French word, what was the attention score
assigned to each of the English words in the input sentence (the lighter the color, the higher
the score):



Source: Neural Machine Translation by Jointly Learning to Align and Translate, Paper

For example, after the first 4 tokens (L’accord sur la…), the attention layer will look at the
calculated attention scores (see the next row in the matrix, the one indexed by “zone”) and
find that the most relevant words are “Area” followed by “Economic”. That helps the decoder
predict “zone” (French translation of “area”), thus effectively capturing the right word order in
the target language. In statistical machine translation, this “what is translated to what at a
given position” or the different word orders between languages are referred to as “alignment”
(hence the title of the paper “Neural Machine Translation by Jointly Learning to Align and
Translate”). The attention mechanism helps establish the word alignment between
languages during translation.

And how are the attention scores calculated? The attention weights are updated during
the training process as the model learns to align the input and output sequences. This is
achieved through back-propagation and optimization techniques, such as stochastic gradient
descent or Adam. In other words, the model is learning by itself which words to “pay
attention” to, or how relevant other words are for a given word in a sentence.



Transformers

With an intuitive understanding of embeddings, RNNs, sequence-to-sequence (seq2seq)
models, and the attention mechanism, we now have a good foundation for understanding
Transformers.

The Transformer was proposed in the seminal paper Attention is All You Need in 2017.
Currently, they are the standard model used not only for seq2seq tasks but also for language
modeling.

An Intuition for How Transformers Work and How They’re Different

Transformer models operate solely on attention mechanisms, i.e. no recurrence is used
(therefore no RNNs). The main motivation for moving away from RNNs is that they’re not
very efficient when processing longer sequences, even with the attention mechanism. RNNs
(and even their more powerful variants such as LSTMs) still have a limited reference
window, i.e., they can only look back at so many words before running into issues (such as
vanishing gradients). In addition, the encoder needs to process the input sequentially, left to
right, and is therefore not capable of considering words that appear to the right when
encoding a particular word. To illustrate this limitation, take the following two sentences:

1. On the river bank…
2. On the bank of the river…

The first sentence can probably be encoded properly by RNN encoders, since by the time
the encoder is processing the word bank, it has already “seen” the word river and should be
able to disambiguate it from the word bank as a financial institution. However, the second
sentence presents a problem: the encoder will see the word bank first, before seeing the
word river. Therefore, when the encoder is processing the word river, bank has already been
encoded (most likely as a financial institution as that is how the word is most often used).

Another consequence of this sequential processing of the input is that parallelization can’t be
used during training.

In contrast, a Transformer’s encoder will “attend’ to tokens all at once by applying the
attention mechanism already at the encoding steps - a mechanism that is referred to as
self-attention, and proceed to encode all tokens in parallel thanks to positional encoding.
Positional encoding allows Transformers to still take word order into consideration (crucial for
language processing) but without the need to process words sequentially.

Relying entirely on self-attention and positional encoding for tasks such as
translation and language modeling are the two main innovations introduced by the
Transformer, and we’ll explore these concepts in more detail.

Self-Attention

If you recall from the previous section, the attention mechanism in a seq2seq
encoder-decoder model is used during the decoding step, where the decoder “attends to” all
encoder states and updates its current decoder state. The encoding of each token was done



sequentially and independently, i.e., the encoder didn’t attend to all the tokens in the input
sequence to better set each token’s individual representation. It was the decoder’s job to
look at the wider picture.

In contrast, self-attention (also referred to as intra-attention) happens during both encoding
and decoding. With self-attention, the encoder will “look at” all other states of the input
sequence while generating the representation for any given token. In other words, the
encoder itself is already attending to all tokens (left and right) when encoding each token, so
the resulting representations will already capture the context-dependent meanings of words.
The decoder will also apply self-attention as it generates tokens by looking at and attending
to the previously generated tokens. At the decoder, the self-attention component happens to
be called masked self-attention because a mask is applied to prevent the decoder from
looking “ahead”, i.e. looking at words that haven’t been generated yet. And how exactly
would that be possible in the first place? It isn’t during inference (when you’re using the
model to actually generate words), but it is during training, in which case - because
supervised training is used - there are reference responses available to the decoder. So,
peeking ahead is indeed possible during training, hence the importance of the mask.

In addition to the self-attention part, the decoder also includes a decoder-encoder attention
layer similar to that of seq2seq models.

In summary, the encoder attends to every token in the input sequence, gathering context,
before generating representations for each token. And, on the decoder side, the same
happens as tokens are generated, with “every token” referring to the previously generated
tokens.

Let’s now look at how self-attention is formally implemented. The original paper describes
the attention function as follows:

The attention function can be described as mapping a query and a set of key-value pairs to
an output, where the query, keys, values, and output are all vectors. The output is computed
as a weighted sum of the values, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key.

Let’s break this down. The concepts of query and key-value pairs are analogous to those of
retrieval systems and can be intuitively understood as follows:

● Query: information to be searched in the system. For example, when you search for
“cats” on a database (say, representing Youtube videos), “cats” is your query.

● Key: the set of keys representing entries in the database (for example, on Youtube,
these could be things like the video title, description, tags, etc).

● Value: the information that is retrieved from the keys that match the query.

Intuitively, the attention function is comparing the current token being processed (the query
token) to the other tokens (the keys). It then gets weights (scores) for the values based on
how good of a match we get between query and keys (i.e., how relevant are those other
tokens to the current token). Then we apply those weights to the values and sum them up to
generate the output. We repeat that for every token and concatenate all results into one final



output vector. This vector will encapsulate a representation of the input tokens along with a
measure of relevance between each pair of tokens.

Illustration of Query, Key, and Value concepts

Another way to develop an intuition around this, especially if you’re a programmer, is to
compare the attention function to a dictionary lookup. Imagine a dictionary that maps tokens
to some value:

Comparing attention function to a soft dictionary lookup (source: Transfer learning and Transformer models (ML
Tech Talks))

Now let’s say we’re looking up the word bank in the dictionary (i.e., the word bank becomes
a query), whose value is v3 in the preceding image. But, we would like to retrieve not only
the value associated with bank (since we don’t just want to look at each word in isolation) but
instead we want to get a weighted sum of all the values of all tokens, where the weights
reflect how similar each token is to bank. Obviously, the weight should be the largest for the
word bank itself (and that’s 0.60 in the preceding image), and somewhat large for river as it
influences the meaning of bank a lot (0.30 in the preceding image). Other tokens will also get
some non-zero score (except for the special [MASK] token which marks the end). The
lookup function will thus return something like what is shown on the right.

And how are the values for query, key, and value vectors obtained? By multiplying the
encoded representation of the token (X) by Q, K, and V matrices respectively. And how are
these matrices constructed and their values obtained? They are learned by the model during
training. In other words, they are model parameters. The attention scores (weights) are



obtained through a dot product between the keys and the query vectors, which just happens
to be a good way of measuring the similarity between vectors.

Once we have Q, K, V, and attention scores, the output of the self-attention layer for each
query is the sum of values weighted by their attention score. The following image illustrates
the usage of these parameters:

Illustration of Q, K, and V parameters (source: Transfer learning and Transformer models (ML Tech Talks))

Note that X here, the encoded representation of the token, is a non-contextual embedding
representation. Effectively, these matrices transform these “raw” token representations into
the Query, Key, and Value vectors. And the motivation behind doing so is that they help
obtain a better representation for computing the compatibility between two vectors.
Intuitively, this helps tokens attend to other tokens, some being considered more relevant
than others. This is crucial when dealing for instance with pronouns, as you want the
pronouns to attend to the noun/subject it is referring to more so than to itself (since pronouns
by themselves carry no meaning or context) or other non-relevant words.

In summary, the Q, K, and V calculations for a given token go like this:

1. Transfer the token vector from the input sequence (X) to a query in vector space:
𝑄uery=𝑋⋅Q.

2. For every token in the sentence (Xi), transfer them to the vector space as key
vectors: 𝐾eys=𝑋i⋅K.

3. For each pair (query, key), obtain their compatibility strength by using the dot
product A=Q(dot)K



4. Self-attention then generates values=𝑋⋅V and the embedding vectors for each
token (X) by summing the values Vi multiplied by their respective score Ai. Each
token contributes proportionally according to its compatibility strength to Q.

In reality, these calculations are done by not one but multiple attention “heads”. Let’s see
why that is.

Multi-Headed Attention

If you think about the way we use language, there are many perspectives one can take when
trying to understand the meaning and role of a word in a sentence because there are several
types of relationships we can draw between words. The form of the word also matters a lot,
especially when generating them during decoding. For example, in some languages, the
subject will define the verb inflection or the gender of the adjectives.

As an example, take the following sentence: “The animal didn’t cross the street because it
was __”. What sort of words could come next here? As you think of words, try to think of the
underlying relationships you’re establishing between that word and the other words in the
sentence. For instance, you may have thought of “scared”, or “tired”. Why? First, there’s the
structure of the sentence which hints at the fact that an adjective probably comes next. But
not just any adjective. It has to be one that makes sense to associate with animals, because
“it” is referring to the animal, and one that motivates the action (of not crossing the street). Or
perhaps you thought “it” referred to “street”, and maybe you thought of other adjectives such
as “wide” or “large”. Also, if this was written in another language, such as French or
Portuguese, the gender of that adjective would need to agree with the gender of the word
“animal” (or “street”). You get the idea: there are several things to think of at the same time
here, and that is the motivation behind the concept of multi-headed attention.

Multi-headed attention allows the model to map words not into a single context vector space,
but into multiple representations across different attention “sub-spaces”. What these
sub-spaces are in terms of what aspects of a relationship between words they represent we
don’t precisely know as these are learned by the model. We just know that there probably
are several (the original paper uses 8) and we let the model figure them out during training.
This is a common technique in machine learning, with a similar concept applied to clustering
algorithms and convolutional networks for images (multiple channels).

That being said, in a 2019 paper titled Analyzing Multi-Head Self-Attention: Specialized
Heads Do the Heavy Lifting, the Rest Can Be Pruned, the authors have identified some
interpretable roles for these heads, which are: positional (focusing on a token’s immediate
neighbors), syntactic (tracking major syntactic relations in the sentence such as
subject-verb, verb-object) and rare tokens (attending to least frequent tokens).

The following image illustrates what sort of “attending” the positional and syntactic heads are
doing:



Positional heads Syntactic heads

Source: Sequence to Sequence (seq2seq) and Attention, NLP course

The “rare tokens” head is a little more counter-intuitive and, in fact, it is believed to be a sign
of overfitting (the model is trying to hang on to rare “clues”).

Positional Encoding
Since the Transformer model architecture doesn’t contain any recurrence, it does not know
the order of input tokens. But the order clearly matters for language processing. For that
reason, the input representation of a token is actually the sum of two embeddings: the word
embedding (which is learned together with the training of the overall network) and the
positional embedding. In the Transformer paper, the authors suggested a fixed positional
encoding using a formula based on sines and cosine functions.

The following image illustrates the idea of adding positional encoding to the word
embedding:

An illustration of positional encoding (source: Sequence to Sequence (seq2seq) and Attention, NLP course)



The intuition is that by adding these values to the token embeddings, we obtain more
meaningful distances between the embedding vectors once they’re projected into Q, K, and
V vector spaces. This makes sense because where the words are relative to each other in a
sentence does impact their meaning a lot and therefore should contribute to the embedded
representations of the words.

Bringing it Together: The Transformer Model Architecture
With an understanding of the building blocks of the Transformer model, we can now look at
the model architecture:

Transformer model architecture, annotated (source: Sequence to Sequence (seq2seq) and Attention, NLP
course)

The encoding and decoding components are actually stacks of six encoders and six
decoders, respectively. Each layer in the stack is structurally similar to all other layers, but
their internal weights are different.

The Encoder Side
The first encoder layer will take the word embedding (which includes the positional
encoding) as input. Each subsequent encoder will take the previous encoder’s output as its
input. Note that this is not recurrence: each encoder takes the output of the encoder
immediately below, not from itself.

Each encoder consists of two layers: a self-attention layer, which works by calculating Q, K,
and V vectors as discussed in a previous section, and a feed-forward neural network layer.
The latter applies to each position separately and identically (though the parameters are
different from layer to layer). And here there’s one key property of Transformer models worth
highlighting: each input token flows independently through its own path in the feed-forward



neural network and therefore they can be processed in parallel. This allows for a substantial
improvement in training efficiency when compared to recurrent or convolutional neural
networks.

The purpose of the feed-forward neural network layer in the encoder is to further process the
output from the self-attention mechanism. Specifically, it applies a position-wise, non-linear
transformation to the attention output. This layer consists of two linear transformations
(dense layers) with a non-linear activation function, usually ReLU (Rectified Linear Unit), in
between. The first linear transformation projects the input to a higher-dimensional space,
while the second one projects it back to the original dimension. Put it simply, this layer adds
an additional level of complexity and expressiveness to the encoding process, enabling the
model to capture more complex patterns and relationships in the input data.

One final step in the encoder is the layer normalization step (“Add & Norm”). This is a
technique that has been found (in a 2016 paper titled Layer Normalization) to reduce the
training time in feed-forward neural networks by normalizing the summed input given to
“neurons” (the nodes in the network) on each training case.

One final detail about the encoder is that it applies a dropout regularization step. This is one
of several regularization techniques that can be used to prevent overfitting, which is when
the model “memorizes” the training data and doesn’t generalize well.

The Decoder Side
Each decoder also consists of self-attention and feed-forward neural network layers, plus an
additional in-between layer which is the encoder-decoder attention. The self-attention layer
attends to previously generated tokens (masking future positions during training) in the
decoder itself, while the encoder-decoder attention attends to the input tokens (by using the
encoder’s K and V vectors).

The decoder’s feed-forward neural network is ultimately generating a vector that represents
(in some low dimensional space) the target tokens with their relative weights. A final layer,
consisting of a fully connected neural network (linear layer) plus a softmax function, then
maps that representation to a higher dimensional one which consists of the probabilistic
distribution over all the target tokens of the target vocabulary (e.g. the English language). It,
therefore, outputs a vector with all tokens in the target vocabulary followed by a number
between 0 and 1, such that they all add up to 1 (they represent probabilities). The token with
the highest probability (or sometimes another token within the top-K probabilities, as we’ll
see later when talking about large language models) is then chosen as the output.

Building a Transformer Model
If you want to get hands-on in building a transformer model and understand how each code
piece relates to each of the Transformer building blocks, check out this Jupyter Notebook:
The Annotated Transformer.



Large Language Models (LLMs)
A language model can be very simply defined as follows: given any sequence of words, a
language model assigns a probability to each word in the sequence. Language models
produce probability distributions over sequences of words.

If you think about it, that’s all that is necessary to model human language. If you’re
translating text, you need a model that scores the candidate translations properly. In speech
recognition, you need a model that scores the candidate utterances pointing out which ones
are more likely to have been spoken. In natural language generation, you need to keep
assigning probable word candidates in a way that the generated text maintains coherence.
Now, obviously, assigning the right probabilities is the difficult part. Up until Transformer
models were invented (in 2017), recurrent neural networks and sequence-to-sequence
models were the best we could do. Their drawbacks were addressed by the Transformer
models.

Transformers trained on large corpora of data, with billions of trainable parameters, turned
out to be better than anyone expected at language modeling. These models, which we refer
to as large language models (LLMs), have demonstrated impressive results on a wide
variety of natural language processing tasks, including emergent abilities. LLMs such as
LaMDA and GPT are based on a modified, decoder-only version of a Transformer.

Let’s dive deeper into how they came to be and how they work.

Training Transformers using Self-Supervised Learning
Self-supervised learning (SSL) is a paradigm of machine learning that requires no
human-annotated labels for model training, which means we can use a dataset consisting
entirely of unlabelled data samples. However, this is not quite unsupervised learning. An
SSL pipeline will generate labels automatically during the first stage, and then use the labels
for supervised learning in the second and later stages. At the end of the day, SSL belongs to
the category of supervised learning. But instead of human labeling, the model itself implicitly
extracts supervisory signals such as correlations, metadata embedded in the data, or
domain knowledge present in the input to generate labels.

Although there’s no formal definition of LLMs, we can say that they consist of large (typically
billions of weights or more) neural networks (typically transformers) trained on large
quantities of unlabelled text using self-supervised learning. In most cases, a transformer is
trained to maximize the probability assigned to the next word seen in the training data, given
the previous context. An LLM may also use a bidirectional transformer (as in the example of
BERT) to assign a probability distribution over words given access to both preceding and
following context. The act of training a language model on text corpora is commonly referred
to as pre-training. This is to differentiate it from the actual training of the model on specific
tasks or for specific purposes. Pre-training is only concerned with getting the model to
“understand” language. However, these two terms are often used interchangeably.

Though LLMs are trained on “simple tasks” such as predicting the next word in a sentence,
with sufficient training data and model size (in terms of parameters) these models seem to



capture much of the syntax and semantics of the human language and “memorize” many
facts as a side effect.

Emergent Abilities
One impressive characteristic of LLMs is that these models develop emergent abilities
through scaling. Emergent abilities are defined as capabilities that are not present in simpler
(smaller) models, and which were not explicitly designed into the model, but are present in
larger models. Example emergent abilities include multi-step arithmetic, taking exams,
chain-of-thought prompting (more on that later), unscrambling a word’s letters, etc.

Transfer Learning and Foundation Models
Many natural language processing (NLP) tasks require common knowledge about language.
For example, knowledge of grammar and the difference between verbs and nouns or
adjectives, as well as their relationships. No matter what NLP task we’re trying to produce,
whether it’s sentiment analysis, question answering, or translation, knowing how to model
and express language is a base knowledge that gets applied in the same way across all
different tasks.

Transfer learning is a machine learning concept and method where we reuse a pre-trained
model, with the base knowledge that we need, and build on it to specialize it to a new task.
The most common paradigm for applying transfer learning is pre-training followed by
fine-tuning for any target task. This is why language models that are not specialized to any
NLP tasks but which have simply been trained (in a self-supervised fashion) on large
corpora of text are referred to as pre-trained models. Fine-tuning is then the process of
training these models further (but not from scratch) to perform a target task well. The
following image illustrates a practical example of this:

Illustration of transfer learning (source: Transfer learning and Transformer models (ML Tech Talks))

The Stanford Institute for Human-Centered Artificial Intelligence's (HAI) Center for Research
on Foundation Models (CRFM) coined the term foundation model to refer to "any model that



is trained on broad data (generally using self-supervision at scale) that can be adapted (e.g.,
fine-tuned) to a wide range of downstream tasks". Therefore, these pre-trained models can
also be referred to as foundation models.

A Brief History of LLMs
In 2018, BERT was developed by Google by training a transformer model on a combination
of BookCorpus (a dataset consisting of over ten thousand unpublished books scraped from
the Internet) and English Wikipedia, totaling around 3.3 billion words. In the same year,
OpenAI’s GPT (generative pre-trained transformer) was trained on BookCorpus, which
amounts to 985 million words.

In February 2019, OpenAI launched GPT-2 as a "direct scale-up" of GPT, with a ten-fold
increase in both its parameter count (to 1.5 billion parameters) and the size of its training
dataset (to 8 million webpages). Also in 2019, OpenAI transitioned from a nonprofit to a
“capped” for-profit company.

In June 2020, OpenAI released GPT-3, which used a decoder-only transformer architecture
with a 2048-token-long context window and a size of 175 billion parameters. Sixty percent of
the weighted pre-training dataset for GPT-3 comes from a filtered version of Common Crawl
consisting of 410 billion byte-pair-encoded tokens.  Other sources are 19 billion tokens from
WebText2 representing 22% of the weighted total, 12 billion tokens from Books1
representing 8%, 55 billion tokens from Books2 representing 8%, and 3 billion tokens from
Wikipedia representing 3%.  GPT-3 was trained on hundreds of billions of words and is also
capable of coding in CSS, JSX, and Python, among others.

In January 2022, OpenAI started using reinforcement learning from human feedback (RLHF)
to provide demonstrations of desired model behavior and rank several outputs from the
model. This data was used to fine-tune GPT-3 and create InstructGPT, a model that was
much better at following instructions than GPT-3, while also making up facts less often and
showing small decreases in toxic output generation.

Also in January 2022, Google published LaMDA (Language Models for Dialog Applications),
a family of Transformer-based neural language models specialized for dialog, pre-trained on
1.56T words of public dialog data and web text.

In March 2022, OpenAI released GPT-3.5 and Codex, an API for generating code.

In April 2022, Google trained PaLM (Pathways Language Model), a 540-billion parameter,
densely activated, Transformer language model. This model was trained on a new ML
system, called the Pathways system, which enables highly efficient training on specialized
hardware. PaLM demonstrated strong capabilities in multilingual tasks and source code
generation.

In November 2022, OpenAI released ChatGPT, which is a fine-tuned model in the GPT-3.5
series. ChatGPT set a record for the fastest web application to reach 100 million users.



In March 2023, OpenAI released GPT-4, which introduced multimodality (text + image),
greater alignment (less likely to produce harmful content), and a better understanding of
nuanced instructions. OpenAI has not released details about the model, including (but not
limited to) model size, architecture, hardware, dataset construction, training method, or
scale. OpenAI did mention scaling optimizations to make training more efficient.

Also in early 2023, Google, Deepmind, Meta, Stanford, and others have released other large
language models such as LLaMA, Alpaca, and Med-PaLM 2, and continue to drive
innovation in large language models and generative AI.

This is an evolving landscape, however, and there have been several more models, model
variants, and companies creating these models than the ones listed. The following image
displays an evolutionary tree of models created since 2018:

Evolutionary tree of LLMs (source: LLMs Practical Guide, Git repository)

Tuning, Prompt tuning, Fine-tuning, Parameter-Efficient Tuning (PET)
Since 2020, LLMs have become capable enough that re-training a model with additional
task-specific training was no longer necessary. These models became “customizable”
through prompt design or by adding a small learnable layer, either of which doesn’t involve
retraining the model. This has created some confusion around what it means to “tune” a
model, so let’s differentiate these terms.

Fine-tuning
Fine-tuning is the practice of modifying an existing pre-trained language model by training it
(in a supervised fashion) on a specific task or domain-specific dataset. This generally
involves updating the base model’s parameters and is expected to improve performance on
the target task.



For example, we can fine-tune a pre-trained language model to perform sentiment
classification on movie reviews. We can achieve this by adding a classifier layer on top of
the base model (which can also be referred to as the foundation model). This classifier layer
may be a simple linear transformation layer, which will add new trainable parameters to the
stack. Then, we train this combined model on labeled data which will fine-tune the entire
stack, adjusting the parameters of the base model. The following image illustrates this
scenario:

Example of pre-training followed by fine-tuning to perform sentiment classification (source: Transfer learning and
Transformer models (ML Tech Talks))

It’s worth noting that the fine-tuning process adjusts the original parameters of the
pre-trained models. However, it’s not as expensive (computationally speaking) as the actual
pre-training of the model as the weights in this case are not randomly initialized but are
already starting from a “good” place thanks to pre-training. That’s why it’s called “fine”-tuning,
as these are minor adjustments only.

For hands-on experience fine-tuning a BERT-based language model, check out this Colab
notebook.

Prompt tuning (vs Prompt Design)
One way to improve the model’s performance on certain tasks without updating the model’s
parameters is through prompt design. With prompt design, you “prime” the model with one or
more examples of problem-solution pairs before giving it the “real” prompt. “One-shot
prompting”, “few-shot prompting”, or “X-shot prompting” all refer to the number of examples
that are provided within each prompt.

An example of one-shot prompting to adapt the model to analyze the sentiment of movie
reviews would be the following:

Review: This movie stinks.
Sentiment: negative



Review: This movie is fantastic!
Sentiment:

Few-shot performance has been shown to achieve competitive results on NLP tasks.

In zero-shot prompting, no examples are provided. Instead, you simply try to steer the model
to give the right answer by engineering the prompt in the right way. For example: "The
sentiment associated with the movie review 'This movie is fantastic!' is".

Prompt design doesn’t involve any model training or tuning and is therefore the cheapest
and easiest way of influencing model responses.

What about prompt tuning?

Prompt tuning is one type of parameter-efficient tuning (PET). PET refers to tuning
techniques that don’t involve updating the base model’s parameters but instead introduces a
new set of parameters connecting the final layer of the base language model to the output of
the downstream task (i.e., the creation of an “adapter layer”, separate from the base model).
This is different from fine-tuning in that the base model remains “frozen”, i.e., its parameters
are not trainable. Only the adapter layer, which is a lot smaller, is trainable.

The specific prompt tuning technique pioneered by Google Research introduces tunable
“soft” prompts. Just like engineered text prompts, these soft prompts are concatenated to the
input, but the difference is that the tokens that comprise the (soft) prompt are learnable. So,
instead of manually trying to design the right prompt to obtain the best results, you have
machine learning do the job for you and optimize the prompt over a training dataset. In
addition, while discrete text prompts are typically limited to under 50 examples due to
constraints on model input length, tunable soft prompts have no such limitation and can
learn from datasets containing thousands or millions of examples. You can think of this
technique as adding one large (and learnable) prompt prefix to each prompt.

The following image illustrates the differences between fine-tuning, prompt tuning, and
prompt design:

Fine-tuning vs prompt tuning vs prompt design (source: Guiding Frozen Language Models with Learned Soft
Prompts, Blog article)



As model size increases, prompt tuning catches up to the performance level of model
fine-tuning. Intuitively, the larger the pre-trained model, the less of a “push” it needs to
perform a specific task, hence the more capable it is of being adapted in a
parameter-efficient way.

Other related techniques have also emerged, being often referred to as parameter-efficient
fine-tuning (PEFT) techniques, creating some confusion around the terminology. What they
all have in common is that they all include a tunable component and they all keep the base
language model frozen (not trainable). Examples of such techniques include LoRA
(Low-Rank Adaptation of large language models) and P-Tuning v2 (also a prompt tuning
technique).

Chain-of-Thought Prompting
Chain-of-thought (CoT) prompting is a prompt engineering technique proposed by Google
researchers in 2022. It improves the reasoning ability of LLMs in multi-step problems by
prompting them to generate the various intermediate steps that lead to their answers.

For example, given the question:

“The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many
apples do they have?”

A CoT prompt that induces the LLM to answer with the reasoning steps (the chain of
thought), such as “A: The cafeteria had 23 apples originally. They used 20 to make lunch. So
they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.”,
is likely to improve the responses of the model on similar questions.

When applied to PaLM, CoT prompting allowed it to perform comparably with task-specific
fine-tuned models on several tasks, even setting a new state of the art at the time on the
GSM8K mathematical reasoning benchmark.

CoT prompting works better with larger and more powerful language models and can also
help improve interpretability of responses.

LLMOps
MLOps (Machine Learning Operations) comprises techniques to streamline the process of
taking machine learning models to production, monitoring, and maintaining them. There are,
however, some peculiarities about LLMs that must be taken into account when it comes to
operationalizing these models. For example, pre-training a large language model requires a
large number of resources and can take a long time. Therefore, retraining these models on a
regular basis is not realistic. In addition, with the parameter-efficient tuning techniques we
previously discussed, that is not necessary (in most cases) in the first place.

The concept of LLMOps as a narrower definition of MLOps has thus emerged to differentiate
the way LLMs are operationalized from the way traditional ML models are. While there’s no
formal definition for it, currently LLMOps typically refers to the application of transfer learning



to existing, pre-trained foundation models, with the creation of adapter layers trained on
proprietary datasets, possibly followed by templated prompts or prompt prefixes.

The following image illustrates this idea:

An illustration of LLMOps (source: LLMOps: MLOps for Large Language Models)

The LLMOps landscape includes foundation model providers (such as OpenAI, Google
Cloud, Meta, Hugging Face, and others), ML- and LLM-optimized platforms (such as Google
Cloud’s Vertex AI with its Cloud TPUs), but also tools and frameworks such as MakerSuite,
Gen App Builder, and Langchain that help users build applications powered by LLMs,
sometimes chaining LLMs together.
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